
 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

Abstract –Despite its clear and growing importance, computer

security education is often relegated to a secondary role in

undergraduate curricula. Exposure to computer security

concerns is often limited to specialized courses and tracks that

reach only a small percentage of students, often late in their

academic careers. Effective security education approaches

must engage more students earlier in their education. These

techniques must be adaptable to fit the needs of differing

educational institutions and student bodies. Our earlier work

with checklist-based security lab modules in CS0 and CS1

provides a basis for a model that can be applied throughout the

undergraduate curriculum and at a wide range of institutions.

We present an agenda for extending this model from

introductory to upper-level undergraduate courses at

institutions ranging from community colleges to

comprehensive universities.

Index terms: Security Injections, Secure Programming, Lab

Modules, Security Integration

I. INTRODUCTION

Although security is commonly agreed to be an important

topic for computer science and information systems

education, this importance is generally not reflected in

current curricula and instructional models. While many

institutions have added security classes and security

tracks, security is not well ingrained throughout

undergraduate computing curricula. New approaches

aimed at bringing security concerns to all computing

students are desperately needed.

Many of the most common security problems – and

particularly those which are most amenable to inclusion in

undergraduate contexts – are based on failures to apply

computing concepts and lessons. From a computer

science viewpoint, coding errors that lead to common

security flaws such as integer overflow, buffer overflow,

and input validation failures reflect a basic failure in

coding fundamentals [1,2]. Code with these

vulnerabilities is not simply insecure code: it is bad code.

This perspective on computer security education informs

the design of our new approach to computer security

education. If we are to teach students how to code

correctly and securely, we cannot leave these topics to

 Authors’ affiliation: Department of Computer and

Information Sciences, Towson University, 8000 York

Road Towson, MD 21252 USA

specialized electives taken in the final year of an

undergraduate education. Security concerns must be

introduced early – before habits are formed – and

reinforced from multiple perspectives throughout

subsequent courses.

A novel pedagogical approach is necessary for re-

conceptualization of computer security education, but it is

not sufficient. Two-year institutions, small colleges, and

large universities differ widely in their curricula and

students. Models that address only one course in one

institution may succeed in their narrowly-defined context,

but successful generalization to wider audiences is by no

means guaranteed. Proper attention to dissemination to a

variety of educational contexts and challenges will make

these new approaches more generalizable.

Building upon our earlier work [3], we have developed a

model of “security injections” – targeted modules that can

be integrated into existing courses with minimal

overhead. This paper will describe some requirements for

both a conceptual approach to computer security

education and for the generalization of this approach.

Specifically, we will present a model for extending this

approach, moving beyond the core computer science

courses to include upper-level computing courses in

networks, databases, and web programming, with an eye

towards meeting the needs of students at institutions

ranging from two-year community colleges to four-year

universities.

II. RELATED WORK

Security is a relatively new challenge in the dynamic field

of computer science. The current state of security

education comprises an increasing number of security

tracks and specialized security courses, such as

cryptography and digital forensics. Towson University

established a security track for computer science majors

in 2002. While feedback from students, faculty, and

industry has been positive [4], the number of students

remains small in comparison to the hundreds of students

in the computer science and computer information

systems majors, and includes few female and minority

students.

Recently, there has been increased attention in both

industry and education towards secure software and

Cross-site Security Integration: Preliminary

Experiences across Curricula and Institutions

 Blair Taylor, Harry Hochheiser, Shiva Azadegan, and Michael O’Leary, Towson University

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

systems development [5]. Since most security threats are

the result of system or software vulnerabilities, it is

imperative that all current and future software developers

are proficient in secure design and programming. While

textbooks have been slow to address these problems,

some recently-published lab materials specifically address

common security flaws such as buffer overflow [6,7,8].

In 2008, the SANS Institute helped sponsor a workshop

on Secure Software Development to allow faculty and

industry security experts to share ideas and create coding

exercises.

Security education in its current state reaches too few

students, too late in their curriculum, after they have

developed insecure programming habits. Many agree that

security should no longer be an afterthought, but instead

must be seamlessly integrated or threaded across the

entire computing curriculum, beginning with the

foundation courses and re-enforced throughout all

students' course of study [2,9,10,11,12,13,14,15,16].

Despite this, comprehensive security integration is largely

an unrealized ideal.

III. PREVIOUS RESULTS

Two years ago, we began implementing a security

integration model. Our primary goal was to reach more

students, earlier in their curriculum. Towards this end, we

have been developing, piloting, and assessing a series of

strategically-placed security-related modules, or security

injections, into our core computer science courses: CS0,

CS1, and CS2.

Security Injections. Security injections are lab modules

that target crucial security issues. As described in detail

in our previous paper [3], each security injection module

includes a background section, a lab exercise centered

around a security checklist, and related discussion

questions.

Background information includes a summary of the

vulnerability, a description of the problem and risk, a

documented example of a real or potential problem in an

existing system, and advice on avoiding the vulnerability.

For example, a security injection module which targets

integer errors describes the Comair program crash in 2004

that occurred when bad weather caused the number of

crew changes to overflow a 16-bit integer [17]. When

appropriate, the modules also contain short code snippets

that demonstrate the vulnerability.

The laboratory component includes exercises designed to

give students experience with the particular vulnerability

being targeted. The labs are specifically crafted to

dovetail with the course concept [3]. For example, input

validation is introduced with the topic of selection and

looping in CS0 and CS1 and reinforced with functions

and classes in CS2.

A core component of the security injection module is the

security checklist, which gives students a clear procedure

for identifying vulnerabilities in their code [3]. Each

checklist targets a particular vulnerability and is

specifically designed for the course and experience level,

For example, students in CS0 use a checklist to identify

arrays with potential buffer overflow. Students in CS2

use checklists to check loop limits and array arguments

for possible overflow conditions. Checklists can serve

double duty on some exercises, acting as scorecards that

instructors can use to grade the security of students' code.

The final component of the security injections is analysis

in the form of discussion questions. Asking students to

reflect on their work enhances the active-learning

approach of the security injection modules.

Results. In spring 2007, we began pilot testing the

security injection modules in the first two programming

classes in our introductory sequence: an elective

introduction to programming designed for students with

limited programming background (CS0), and the first

course in our required two-course seqeunce (CS1). In fall

2007, we piloted a section in the second required course

(CS2). To measure the impact of our model, we created

and administered a 25 question pre and post

questionnaire. The questionnaire included 5 demographic

questions and 20 security questions. In total, we tested

392 students pre and 275 post and found a significant

increase in student awareness of security concerns for

those students who completed the security injections [3].

These results indicate that the security injections are an

effective way to teach security across the curriculum with

minimal impact on already-overburdened undergraduate

degree programs. These modules also serve as valuable

supplemental materials for faculty, augmenting the

meager, or non-existent, discussions of security concerns

in existing computer science textbooks.

IV. INCREASING BREADTH

Two-year institutions, small colleges, and large

universities vary greatly in their curricula, students, and

resources. The ever-changing nature of computer science

provides unique challenges for educators and computing

programs differ widely in terms of requirements, course

sequences, and electives. Even introductory computer

science courses, suffer a lack of uniformity in

programming languages, platforms, textbooks, instructors,

and requirements; yet, these courses are often expected to

transfer seamlessly between two and four year

institutions. Despite these differences, educators at

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

different institutions share similar issues, including

overextended curriculum, lack of resources, the challenge

of educating diverse populations of students, and the

pressure to stay up-to-date in a rapidly evolving field.

To increase the applicability of our model, we are

currently working with four partnering institutions,

including Anne Arundel Community College, the

Community Colleges of Baltimore County, Harford

Community College, and Bowie State University, a four-

year historically-black university. Our efforts to

understand the specifics of teaching computer security led

to a pedagogical approach that can be applied to varying

types and sizes of institutions. What began as a pilot

program in one section of one course has expanded across

five institutions and four courses, with additional courses

in development.

The collaborative nature of this project led to a cyclical

model for developing these materials. Borrowing from the

software development lifecycle and NSF's cycle of

innovation [18], our approach to implementing

curriculum change across multiple institutions is shown in

Figure 1.

Define Goals. Our project began with a need to address

deficiencies in security education and our goal was to

infuse security throughout the curriculum. The objectives

were to increase students' security awareness and ability

to apply security principles, increase the number of

security-skilled students, and improve faculty awareness.

It was advantageous to the success of the project that our

goal was a well-established ideal shared among computer

science professionals. It was relatively easy, in our case,

to "sell" the concept of security amongst our colleagues.

Clear, reasonable goals increase motivation towards

participation and eventual dissemination and deployment.

Develop Materials. The primary materials for our project

include the security lab modules and the instruments used

for assessment. The writing and revision of lab modules

is an iterative and collaborative process. We place all

modules on a project wiki (available from the project web

page http://www.towson.edu/cosc/securityinjections/) for

downloads, comments, and revisions. The security

injections are repeatedly revised and improved based on

pilot testing, assessment, and peer reviews. Additionally,

to formalize the assessment process, we have developed

evaluation instruments including pre and post

questionnaires.

Pilot Test. An important element of our model is

incremental pilot testing. Pilot testing began at the start

of a semester with a base set of materials, an assessment

instrument, and one instructor. We found instructors

reacted most favorably to a flexible, voluntary approach,

so pilot testing may include multiple instructors who

choose to use only a subset of the materials. Feedback

from the pilot tests provides guidance for fine-tuning the

contents of the injections. Participation in the pilot tests

provides instructors with experience that will help them

act as mentors to colleagues piloting or deploying

modules in subsequent semesters. It is recommended that

each phase of curriculum change, new materials, a

different course or a different institution, begin as a pilot.

These curriculum changes are intended to be minimally

invasive. Therefore, specific details of deployment are

largely determined by the individual instructor. It is

expected that instructors will modify content as needed.

Larger classes (>100 students) may require staged

deployment.

Assess, Evaluate, and Revise. Unique to our model and

critical to producing effective curriculum materials was a

formal assessment process. Formal assessment includes

pre-tests and post-tests across all sections, including

controls, of targeted courses, scorecards, and faculty

surveys to assess student achievement. Independent

consultants in both technical content and pedagogical

assessment provide additional feedback.

Student awareness of security issues is measured pre- and

post-exposure to the modules. Data collected, including

overall and content specific answers from pre-tests and

post-tests, sampling of security injections, scorecard

evaluation, and faculty feedback from survey instruments

each semester informs the process of revising content.

Subjective responses and comparisons between versions

of module material will be particularly important in this

regard, providing the project team with insights into what

worked and what did not. Content is updated accordingly

after each semester.

In addition to validating the security injection modules,

formal assessments evaluate the success of a particular

approach for integrating an important concept across

several undergraduate classes. Comparison of the

qualitative and quantitative measurements will be used to

improve pre- and post-test questionnaires, with the goal of

developing broadly applicable models.

Data from different sections of each class and from

different institutions will be examined for differences that

Figure 1: A collaborative model of improving and disseminating

materials

http://www.towson.edu/cosc/securityinjections/

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

will increase our understanding of the factors that might

determine the success of security injections. Differences

between institutions (university vs. community college),

classes (introductory vs. upper-level) and student profiles

(particularly presence of females and under-represented

groups) that are correlated with variances in effectiveness

of these approaches would be of particular interest.

Our experience with the initial deployment [3], detailed in

the previous section, culminated in the above model. The

direct result of the collaborative and iterative nature of the

process is a quality product, namely the security

injections. By beginning with a base set of materials and

operating under an open source framework, we continue

to develop a robust and well-tested set of materials that

works across many institutions. All partnering institutions

have begun pilot testing modules in at least one of the

courses.

V. INCREASING DEPTH

While it is important to expose students to security

concepts early in their studies, before they learn poor

habits, incorporating security injections in the

introductory classes is not sufficient. Security in depth

incorporates a multilayered approach and comprehensive

security integration requires expanding the security

injections to other courses beyond the core. To ensure

thorough comprehension of key security concepts,

repetition and reinforcement is important. Additionally,

more advanced level classes allow further and deeper

investigation of security issues. Following the security

injection model we have developed for CS0 and CS1 [3],

and in the spirit of recent efforts that have built upon this

model [8], we are expanding our integration to include a

variety of courses throughout the undergraduate

curriculum. These efforts will include programming-

intensive courses from computer science programs and

systems-level courses suitable for information

systems/computer information systems majors as well as

the introductory computer literacy course for non-majors.

Content in these modules is organized around the three

main themes of the Common Weakness

Enumeration/SANS top 25 most dangerous programming

errors: insecure interaction between components, risky

resource management, and porous defenses [19].

Building on materials developed for the first two

introductory courses (CS0 & CS1), we are moving on to

several subsequent courses in the undergraduate

curriculum. The second required course in our sequence

(CS2) was piloted during the 2007-2008 academic year,

and materials for database, networks, web development,

and introductory general education course are under

development.

An overview of the mapping between these themes and

the specific contents of current and potential modules is

given in Table 1.

 A. CS0, CS1, and CS2

Materials for CS0, CS1, and CS2 focus on the “big three”

security vulnerabilities: integer errors, buffer overflow,

and input validation [20]. Each vulnerability is

introduced at a level that corresponds with the appropriate

course topic or primitive, such as selection, looping, or

functions [3]. For example, CS1 includes three input

validation modules: a gentle introduction to validating

input to be used when discussing selection (if-else and

switch), a more robust coverage to be used with loops

(while and do-while), and a final module that discusses

input validation with functions. See Table 2 for an

overview of modules and topics covered in CS0, CS1, and

CS2.

High Level

Category
Security topic Courses

Risk
Risk analysis and

management

DBase, CIS0

Insecure

Interaction

Between

Components

Input validation CS0, CS1,

CS2, Dbase,

Networking,

CIS0

SQL Injection Dbase

Cross-Site Scripting Web

Risky

Resource

management

Buffer overflow CS0, CS1,

CS2

File names & search

paths

CS2,

Networking,

Web

Download of code

without integrity check

CIS0

Improper initialization CS1, CS2

Incorrect calculation

(integer overflow)

CS0, CS1,

CS2

Improper resource

shutdown or release

CS2

Porous

Defenses

Improper authorization Networking

Hardcoded password CS1, CIS0

Insecure permission

 assignment for critical

resources

Networking,

Dbase

Insufficient randomness CS1, CS2

Malicious file execution CIS0

Table 1: Mapping CVE/SANS top programming

errors [19] to specific courses.

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

A set of common learning objectives (Table 3) links these

materials across the three classes. By making these

objectives progressively more challenging as students

move from CS0 to CS1 and CS2, we hope to use repeated

exposure to reinforce the relevant concepts. Modules for

CS0, CS1, and CS2 are provided in both Java and C++, to

accommodate varying preferences for languages of

instruction. Translation to other languages should be

straightforward.

CS0 and CS1: Security injections for CS0 and CS1

present very basic introductions to the various

vulnerabilities through simple program assignments [3]

that demonstrate software weaknesses and require

students to write simple code without vulnerabilities. For

example, a buffer overflow example might iterate through

and past the bounds of an array. Additionally, security

checklists are introduced incrementally. For example,

students in CS0 first learn to mark potential integer errors

and progress to mark un-validated data. Repeated

exposure to security checklists teaches students to self-

check and reinforces key security principles.

CS2: As the second required course in the introductory

programming sequence, CS2 generally focuses on object-

oriented programming (including inheritance and

polymorphism), along with an introduction to basic data

structures. CS2 modules present more challenging

examples with more realistic code – for example,

implementing routines to extract substrings from a

character array. CS2 modules also differ explicitly in the

added objective of modifying programs to eliminate

potential vulnerabilities. Students are asked to revise

programs after having used the checklists to mark buffer

accesses, and integer operations that might be associated

with security flaws. This additional task presents

challenges that go beyond writing code without

vulnerabilities, while providing a basic introduction to the

realistic task of fixing someone else’s code.

The greater sophistication of CS2 students allows for

security injection modules that explore these topics in-

depth. Once students have completed introductory work

in object-oriented programming, they will implement

basic classes that provide safer integer operations,

implement managed buffers such as vectors, or provide

input validation. Future modules will also address topics

such as entropy, randomness, secrets, and basic

encryption.

B. Databases

Security injections for a database course address both

programming and design concerns. As perhaps the most

familiar and dangerous class of database security

vulnerabilities [20], SQL injections are a natural starting

point. Input validation for queries and the appropriate use

of prepared statements and parameterized queries will be

the basis for additional modules.

Database design issues will also focus on data

organization and management strategies aimed at

reducing risks. Authentication, access controls and least

privilege models will be discussed in terms of minimizing

unauthorized access or modification of data. More

specifically, security injections will be prepared related to

mandatory access control, discretionary access control,

and role-based access control.

Appropriate use of cryptography for protecting sensitive

information will be discussed [23], along with strategies

for storing and managing authentication-related

information (e.g., storage of hashed passwords instead of

originals). Issues related to information leakage and

database fingerprinting through error messages and the

Vulnerability Task CS0 CS1 CS2

Integer Error Data X X X

Operations X X

Input

Validation

Selection X X

Loops X X

Functions X X X

Classes X

Buffer

Overflow

Arrays X X X

Table 2: Coverage of vulnerabilities and tasks in

introductory courses.

Objective CS0 CS1 CS2

Describe the vulnerability X X X

Describe problems that may

result from the vulnerability

X X X

Identify potential

vulnerabilities in a simple

program written in the

language of instruction

X X X

Discuss general strategies for

mitigating or avoiding

potential vulnerabilities

 X X

Write code that uses

appropriate techniques to

mitigate or avoid potential

vulnerabilities

 X X

Revise a program,

eliminating potential

vulnerabilities

 X

Table 3: Learning Objectives for CS0, CS1, and

CS2

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

use of logging facilities as a means of supporting security

auditability are other topics of interest.

C. Networks

Security injections for a networking course will focus on

theoretical aspects of network protocol design and

practical issues of network configuration. Protocol design

questions will address flooding, denial of service, and

network encryption (link and end-to-end). Network

configuration questions may involve firewalls, DMZs,

proxies, authentication, and tunneling.

D. Web Development

With content including page design with HTML and CSS,

client-side scripting, and database-driven web

applications, Web Development courses include

numerous security-related concerns. The Open Web

Application Security Project’s (OWASP) top 10 web

vulnerabilities [21] fit within the larger framework of the

CVE/SANS themes [19] to form a roadmap for

addressing security issues in web development. Many of

the topics discussed in the afore-mentioned courses -

particularly input validation and SQL injection - would be

applicable in this course as well. Other topics of interest

include cross-site scripting, and cross-site request forgery

(insecure interactions); malicious file execution,

information leakage, failure to restrict URL access, and

insecure direct object reference (risky resource

management); and improper session management, session

management problems, insecure communication, and

insecure cryptographic storage (porous defenses) [21,22].

Security injections for these topics will involve a

combination of design questions regarding handling of

information, construction of URLs and web parameters,

and information flow in web applications. Programming

examples and exercises may involve best (or worst)

practices in managing security issues in web frameworks

such as Java EE, PHP, Ruby on Rails, or .NET. Security

training tools such as OWASP’s WebGoat [22] might

provide appropriate exercises.

E. CIS0

To expand the scope of our integration beyond the major

classes listed above, we have also targeted the computer

literacy course, or "CIS0", as an effective way to reach an

even larger number of students. Designed for non-

computing majors, CIS0 is an introductory level breadth-

first approach to the fundamental terminology, concepts,

and applications of computing. Typically housed in the

computer science or information systems department to

satisfy a general education requirement, CIS0 is generally

transferable between two and four-year institutions.

Consequently, CIS0 is a popular choice for students

looking to gain valuable technology skills; our own

institution generally offers over 25 sections per semester.

This course presents an excellent opportunity to extend

security integration to a large and diverse audience of

students, early in their studies.

Brainstorming with our partner institutions, we identified

some of the following topics as appropriate for security

injection modules in CIS0: phishing, asset and risk

management, password management, social engineering,

passwords, firewalls, data mining, malware, and physical

security. Introduction to important security terminology,

awareness, and real life examples would be important at

this level. Sample exercises might include phishing

activities, risk analysis, and researching sites such as

CERT for current events including vulnerabilities and

malware warnings. Currently, Bowie State University is

piloting several security injection modules in its CIS0

course, including topics such as phishing, input

validation, passwords, and risk analysis.

VI. ASSESSMENT

Our earlier work in CS0 and CS1 used a questionnaire to

assess student awareness of security and secure

programming concerns. Surveys were administered at the

start– before exposure to the security injections – and at

the end of each semester. Comparison of these pre- and

post-tests yielded encouraging results [3]. Continued

efforts using a refined version of this survey will allow

cross-institutional comparison and (through anonymous

ID numbers) examination of differences on a per-student

basis.

Assessment of mastery of content material will take two

forms. Samples of completed lab modules will be

collected and independently-graded by multiple

instructors. These results will be used to assess the

success of the modules relative to objectives such as those

given in Table 3.

Additional assessment exercises, in the form of questions

and problems are currently under development. Where

possible, these exercises will be included on quizzes and

tests, with responses collected and reviewed relative to

learning objectives. It is important to frame these

questions with an emphasis on best practices rather than

language-specific issues. Thus, instead of asking students

to write some code that avoids integer errors, a test

question might ask students to ensure that their code

robustly handles a wide range of input values.

VII. DISCUSSION

Five interdependent aspects of our model combine to

provide a foundation for sustainable curricular change:

Clearly targeted goals and mechanisms: The

combination of a clear project goal - integrating computer

security into existing undergraduate computing classes –

and mechanisms for meeting that goal – the security

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

modules – provide an easily-understood model that has

proven effective for engaging colleagues and educators.

This focus has been particularly important for helping

collaborators understand the scope of our project. If we

had suggested a wholesale revision of all courses in the

undergraduate curricula to include explicit security

modules, we probably would have encountered significant

resistance from colleagues who would have been

(justifiably) concerned about the impact of such an

ambitious agenda. Instead, our model proposed a modest,

well-defined set of changes to a manageable number of

courses. These achievable goals are much easier to sell to

colleagues and administrators.

Manageable expectations of colleagues: Even with the

small number of courses included in our project, any

changes that required substantial time and energy

commitment from faculty colleagues would have been

unlikely to succeed. We specifically designed our

curricular proposals to be minimally-invasive: instead of

asking colleagues to take time to develop new materials,

we provided them with modules that help them address

the constant need for challenging lab exercises. So far,

this had been an effective strategy for generating

engagement.

Templates and roadmaps: High-level descriptions of

goals and techniques may be necessary for

contextualizing the rationale behind curriculum changes,

but they aren't sufficient for making such change happen.

All of the materials that we develop are presented in a

common format on the project web site. In addition to

providing concrete details that clearly moved the effort

out of the realm of abstraction, these documents provide a

starting point for future collaboration and contribution, as

project participants can see how they could use these

models to revise materials or to develop entirely new

modules.

Collaboration and feedback from project participants

with varied perspectives: Colleagues from our partner

institutions were engaged from the early stages in active

roles. Meetings that were initially scheduled as training

sessions morphed into open workshops that provided

invaluable feedback. These workshops, which included

open discussions and breakout groups to promote

feedback, reflection and sharing of teaching strategies,

helped to integrate faculty early into the development

process and maximize feedback in the hopes of

identifying factors that work well across the different

demographic groups.

Although financial support for participation certainly

helps to motivate participation, we believe that including

participants as true partners helps sustain engaged

commitment. Modules developed by the authors were

presented to project participants as drafts – initial

proposals that served as a starting point for discussion and

revision. Feedback, criticisms, and input from the

participants was repeatedly encouraged and incorporated

into the materials,

 Multiplicity of Models: The range of participants in our

security project underscored a fundamental challenge in

applying curricular changes to multiple, differing

institutions: there is no “one-size-fits-all” solution. We

have repeatedly encouraged our partners in the project to

use our materials as starting points for customization to

meet their special needs. These revisions will be made

available along with the originals, providing a variety of

interpretations and perspectives that will be available to a

broader audience of instructors. Providing a range of

options – particularly to those who are not directly

associated with the project – will move us in the direction

of a community effort that might be able to provide

“something for everyone.”

VIII. STATUS AND FUTURE WORK

After extensive pilot testing at Towson University,

materials for the first courses – CS0 and CS1 – are

currently being deployed at Towson University and

piloted across our partnering institutions. Currently,

piloting of CS2 is in progress at Towson University and

piloting of CIS0 has begun at Bowie State University.

Training, piloting, and deployment are ongoing and will

continue until all partners are using these materials.

Materials for web development are under development,

database and networking materials will follow, with

materials generally being piloted at the institution of the

developing staff before deployment to partner institutions.

Assessment and revision will be ongoing processes for all

classes.

Dissemination and adoption remain significant

challenges. An open model that invites participation

while providing instructors with the flexibility needed to

adapt materials for their particular needs may remove

some obstacles, but systemic curriculum change requires

broader commitment. Our experience has been that most

instructors understand the need for more pro-active

engagement with security issues in undergraduate

courses, but time constraints and lack of effective

pedagogical materials prevent them from doing so. By

deploying our modules in a variety of educational

contexts, refining the material based on the results of

those experiences, conducting assessments to validate the

efficacy of the materials, and providing instructors with

clear guides regarding the use of these modules, we hope

to build a suite of security tools that instructors will find

worthwhile.

Future goals include expansion to additional

undergraduate classes, including software engineering,

human-computer interaction, and systems analysis and

design. Modules with programming or system-specific

content might be translated either into additional

 Proceedings of the 13th Colloquium for Information Systems Security Education

 Seattle, WA June 1 - 3, 2009

ISBN 1-933510-96-7/$15.00 2009 CISSE

languages such as Python or Perl for CS0/CS1/CS2, or to

different platforms for database and web development

classes. Revision of assessment materials is expected to

be ongoing. All materials, including modules, objectives

statements, and assessment tools, will be available at

http://www.towson.edu/cosc/securityinjections.

Acknowledgments: This research was supported by NSF

CCLI Grant DUE-0817267. Thanks to AC Chapin,

Patricia Gregory, Jack McLaughlin, Claude Turner, and

our colleagues for their valuable contributions and

feedback.

IX. REFERENCES

[1] R. Seacord, Secure Coding in C and C++, Addison-

Wesley, Upper Saddle River, NJ (2006).

[2] J. Viega and G. McGraw, Building Secure Software,

Addison-Wesley, Boston, MA (2002).

[3] B. Taylor and S. Azadegan, Moving Beyond Security

Tracks: Integrating Security in CS0 and CS1.

Proceedings of the 38th SIGCSE technical symposium on

Computer science education. Portland, OR, (2008).

 [4] S. Azadegan, M. Lavine, M. O’Leary, A. Wijesinha,

and M. Zimand, An undergraduate track in

computer security. In Proceedings of the 8th Annual

Conference on innovation and Technology in

Computer Science Education, Greece (2003).

[5] R. Westervelt, Educators see secure coding training

challenges, improvements, Search Security.com

http://searchsecurity.techtarget.com/news/article/0,28914

2,sid14_gci1346086,00.html, Accessed February 12,

2009.

[6] J. Walden and C. Frank, Secure Software Engineering

Teaching Modules. In InfoSecCD Conference '06,

Kennesaw, GA (2006).

[7] J.R. Crandall, S.L. Gerhart, and J.C. Hogle, Driving

Home the Buffer Overflow Problem: A Training Module

for Programmers and Managers, National Colloquium for

Information Systems Security Education NCISSE 2002

Conference, Seattle, WA (2002).

[8] A. Frazier, X. Yuan, Y. Li, and S. Hudson, Course

Modules for Software Security, Proceedings of the 12th

Colloquium for Information Systems Security Education,

Dallas, TX (2008).

[9] V. Pothamsetty, Where Security Education is Lacking.

Proceedings of the 2nd Annual conference on Information

Security Curriculum Development, (2005).

[10] W. A. Conklin and G. Dietrich, Secure Software

Engineering: A New Paradigm. Proceedings of the

40th Hawaii International Conference on System

Sciences, Manoa, HI (2007).

[11] J. Davis and M. Dark, Teaching Students to Design

Secure Systems, IEE Security and Privacy,

Vol. 1, Num. 2, (March 2003).

[12] M Graff and K. van Wyck, Secure Coding:

Principles and Practices, O’Reilly, Sebastopol, CA

(2003).

[13] G. Hoglund and G. McGraw, Exploiting Software:

How to Break Code, Addison-Wesley, Boston, (2004).

[14] M. Howard & D. Leblanc, Writing Secure Code,

Microsoft Press, Redmond, WA (2003).

[15] C. E. Irvine, S. Chin and D. Frincke, Integrating

Security into the Curriculum, IEEE Computer, pp.

25-30., (Dec. 1998).

[16] L.F. Perrone, M. Aburdene, and X. Meng,

Approaches to undergraduate instruction in computer

security, Proceedings of the American Society for

Engineering Education Annual Conference and

Exhibition, (2005).

[17] Epstein, J. 2004, “Comair cancels all flights 25

December” Comp.RISKS 23(63)

http://catless.ncl.ac.uk/Risks/23.63.html#subj2 (Accessed

April 8, 2009).

[18] National Science Foundation Research and

Evaluation on Education in Science and Engineering

(REESE) Program Solicitation NSF 07-595,

http://www.nsf.gov/pubs/2007/nsf07595/nsf07595.htm,

retrieved February 12, 2009.

[19] S. Christey, 2009 CWE/SANS Top 25

MostDangerous Programming Errors,

http://cwe.mitre.org/top25/, Accessed 13 February 2009.

[20] SANS Institute,New Report Identifies the Three

Programming Errors Most Frequently Responsible For

Critical Security Vulnerabilities and Security Incidents in

2006, retrieved Febraury 12, 2009 from http://www.ssi-

sans.org/resources/top_three.pdf.

 [21] Open Web Application Security Project, Top 10

2007, http://www.owasp.org/index.php/Top_10_2007,

Accessed February 13, 2009.

[22] Open Web Application Security Project, OWASP

WebGoat Project,

http://www.owasp.org/index.php/Category:OWASP_Web

Goat_Project, Accessed February 13, 2009.

[23] K. Keenan, Cryptography in the Database: The Last

line of Defense, Addison-Wesley, Boston, MA (2005).

http://www.ssi-sans.org/resources/top_three.pdf
http://www.ssi-sans.org/resources/top_three.pdf

